Pangenome mining of the Streptomyces genus redefines their biosynthetic potential

biorxiv(2024)

引用 0|浏览5
暂无评分
摘要
Background: Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly-complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives. Result: We performed pangenome analysis on 2,371 Streptomyces genomes, including approximately 1,200 complete assemblies. Employing a data-driven approach based on genome similarities, the Streptomyces genus was classified into 7 primary and 42 secondary MASH-clusters, forming the basis for a comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene clusters (BGCs) redefined their diversity across different MASH-clusters. This workflow also reassigned 2,729 known BGC families to only 440 families, a reduction caused by inaccuracies in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a conserved genomic structure (synteny) among BGCs becomes apparent within species and MASH-clusters. This synteny suggests that vertical inheritance is a major factor in the acquisition of new BGCs. Conclusion: Our analysis of a genomic dataset at a scale of thousands of genomes refined predictions of BGC diversity using MASH-clusters as a basis for pangenome analysis. The observed conservation in the order of BGC genomic locations showed that the BGCs are vertically inherited. The presented workflow and the in-depth analysis pave the way for large-scale pangenome investigations and enhance our understanding of the biosynthetic potential of the Streptomyces genus. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要