Bayesian Workflow for Generative Modeling in Computational Psychiatry

Alexander J. Hess,Sandra Iglesias, Laura Köchli,Stephanie Marino,Matthias Müller-Schrader, Lionel Rigoux, Christoph Mathys,Olivia K. Harrison,Jakob Heinzle, Stefan Frässle,Klaas Enno Stephan

biorxiv(2024)

引用 0|浏览4
暂无评分
摘要
Computational (generative) modelling of behaviour has considerable potential for clinical applications. In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, Bayesian workflow has been suggested which, however, has rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of Bayesian workflow in the context of a typical application scenario for TN/CP. This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary responses and are typically univariate. This poses challenges for statistical inference due to the limited information contained in such data. We present a novel set of response models that allow for simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that harnessing information from two different data streams (binary responses and continuous response times) improves the accuracy of inference (specifically, identifiability of parameters and models). Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and participants’ uncertainty about the outcome. Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue that adopting Bayesian workflow for generative modelling helps increase the transparency and robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要