Smart Mobility Digital Twin Based Automated Vehicle Navigation System: A Proof of Concept

IEEE Transactions on Intelligent Vehicles(2024)

引用 0|浏览4
暂无评分
摘要
Digital twins (DTs) have driven major advancements across various industrial domains over the past two decades. With the rapid advancements in autonomous driving and vehicle-to-everything (V2X) technologies, integrating DTs into vehicular platforms is anticipated to further revolutionize smart mobility systems. In this paper, a new smart mobility DT (SMDT) platform is proposed for the control of connected and automated vehicles (CAVs) over next-generation wireless networks. In particular, the proposed platform enables cloud services to leverage the abilities of DTs to promote the autonomous driving experience. To enhance traffic efficiency and road safety measures, a novel navigation system that exploits available DT information is designed. The SMDT platform and navigation system are implemented with state-of-the-art products, e.g., CAVs and roadside units (RSUs), and emerging technologies, e.g., cloud and cellular V2X (C-V2X). In addition, proof-of-concept (PoC) experiments are conducted to validate system performance. The performance of SMDT is evaluated from two standpoints: (i) the rewards of the proposed navigation system on traffic efficiency and safety and, (ii) the latency and reliability of the SMDT platform. Our experimental results using SUMO-based large-scale traffic simulations show that the proposed SMDT can reduce the average travel time and the blocking probability due to unexpected traffic incidents. Furthermore, the results record a peak overall latency for DT modeling and route planning services to be 155.15 ms and 810.59 ms, respectively, which validates that our proposed design aligns with the 3GPP requirements for emerging V2X use cases and fulfills the targets of the proposed design. Our demonstration video can be found at https://youtu.be/3waQwlaHQkk.
更多
查看译文
关键词
smart mobility digital twin,navigation system,vehicle-to-everything,cloud and edge computing,implementation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要