In-Situ Polymer Framework Strategy Enabling Printable and Efficient Perovskite Solar Cells by Mitigating "Coffee Ring" Effect

ADVANCED MATERIALS(2024)

引用 0|浏览3
暂无评分
摘要
Organic-inorganic hybrid perovskites are considered ideal candidates for future photovoltaic applications due to their excellent photovoltaic properties. Although solution-printed manufacturing has shown inherent potential for the low-cost, high-throughput production of thin-film semiconductor electronics, the high-quality and high-reproducibility deposition of large-area perovskite remains a bottleneck that restricts their commercialization due to the droplet coffee-ring effect (CRE). In this study, these issues are addressed by introducing an in situ polymer framework. The 3D framework formed by spontaneous cross-linking improves the precursor viscosity and homogenizes its heat diffusion coefficient, counteracting the lateral capillary flow of the colloidal particles and anchoring their flocculent movement. Thus, the Marangoni convection intensity is properly controlled to ensure high-quality perovskite films, which significantly enhances reproducibility in printing efficient photovoltaics by mitigating the CRE. Subsequently, the perovskite solar cells and modules achieve power conversion efficiencies of 23.94 and 17.53%, and exhibit positive environmental stability, retaining over 90 and 78% efficiency after storage for 2500 and 1600 h, respectively. This work may serves as a foundation for exploring precursor rheology to match the homogeneous deposition requirements of perovskite photovoltaics and facilitating the advancement of their printing manufacturing and commercialization transition. In this work, a 3D framework formed by spontaneous cross-linking is introduced in perovskite precursor to increase their viscosity and homogenize their heat diffusion coefficient. As a result, the Marangoni convection intensity during meniscus printing is properly controlled, thus ensuring the deposition of high-quality perovskite films and significantly enhancing the reproducibility in printing efficient photovoltaics by mitigating the coffee-ring effect.image
更多
查看译文
关键词
coffee-ring effect,in situ polymer framework,Marangoni convection,perovskite solar cells,printing manufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要