RdRp activity test using CRISPR/Cas13a enzyme (RACE) for screening of SARS-CoV-2 inhibitors

SENSORS AND ACTUATORS B-CHEMICAL(2024)

引用 0|浏览1
暂无评分
摘要
The coronavirus disease 2019 pandemic has highlighted the need for efficient antiviral drug screening tech-nologies, particularly for targeting RNA-dependent RNA polymerase (RdRp). Here, we present a novel RdRp activity assay using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) enzyme (RACE) for screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitors. This is the first application of the CRISPR/Cas complex for RdRp activity-based drug screening. The RACE system combines RdRp, RNA template, target inhibitor, CRISPR/Cas13a, and reporter probe, enabling accurate detection of the inhibitory effect on RdRp activity. This is demonstrated by the system's ability to provide half-maximal inhibitory concentration values of 7.5 +/- 0.5 and 8.9 +/- 0.6 mu M for remdesivir triphosphate and C646, respectively. In addition, the RACE system requires a detection time of 5 min, making it more efficient than traditional endpoint assays. The real-time fluorometric output of the RACE system allows monitoring of reactions, providing insight into the kinetics of RdRp activity. Furthermore, the versatility of the RACE system extends to lateral flow assay formats, improving convenience. We anticipate that the RACE system has the potential to identify antiviral compounds that target RdRp, thereby accelerating the development of effective antiviral therapies.
更多
查看译文
关键词
COVID-19,SARS-CoV-2,RNA-dependent RNA polymerase activity,Antiviral drug screening,CRISPR/Cas
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要