Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das, Xi Chen, Bertram Ieong, Parikshit Bansal,Sujay Sanghavi

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
It is well known that selecting samples with large losses/gradients can significantly reduce the number of training steps. However, the selection overhead is often too high to yield any meaningful gains in terms of overall training time. In this work, we focus on the greedy approach of selecting samples with large approximate losses instead of exact losses in order to reduce the selection overhead. For smooth convex losses, we show that such a greedy strategy can converge to a constant factor of the minimum value of the average loss in fewer iterations than the standard approach of random selection. We also theoretically quantify the effect of the approximation level. We then develop SIFT which uses early exiting to obtain approximate losses with an intermediate layer's representations for sample selection. We evaluate SIFT on the task of training a 110M parameter 12-layer BERT base model and show significant gains (in terms of training hours and number of backpropagation steps) without any optimized implementation over vanilla training. For e.g., to reach 64 first layer takes  43 hours compared to  57 hours of vanilla training.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要