Optimized noise-assisted simulation of the Lindblad equation with time-dependent coefficients on a noisy quantum processor

José D. Guimarães, Antonio Ruiz-Molero, James Lim, Mikhail I. Vasilevskiy, Susana F. Huelga,Martin B. Plenio

Physical Review A(2024)

引用 0|浏览3
暂无评分
摘要
Noise in quantum devices is generally considered detrimental to computational accuracy. However, the recent proposal of noise-assisted simulation has demonstrated that noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices. In this context, we introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude, in comparison to the original noise-assisted simulation. We further extend this approach to encompass Lindblad equations with time-dependent coefficients, using only quantum error characterization and mitigation techniques. This extension allows for the perturbative simulation of non-Markovian dynamics on NISQ devices, eliminating the need for ancilla qubits or mid-circuit measurements. Our contributions are validated through numerical experiments on an emulated IBMQ device. Overall, our work offers valuable optimizations that bring current quantum processors closer to effectively simulating realistic open systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要