Efficient Tuning and Inference for Large Language Models on Textual Graphs

CoRR(2024)

引用 0|浏览6
暂无评分
摘要
Rich textual and topological information of textual graphs need to be modeled in real-world applications such as webpages, e-commerce, and academic articles. Practitioners have been long following the path of adopting a shallow text encoder and a subsequent graph neural network (GNN) to solve this problem. In light of recent advancements in large language models (LLMs), it is apparent that integrating LLMs for enhanced textual encoding can substantially improve the performance of textual graphs. Nevertheless, the efficiency of these methods poses a significant challenge. In this paper, we propose ENGINE, a parameter- and memory-efficient fine-tuning method for textual graphs with an LLM encoder. The key insight is to combine the LLMs and GNNs through a tunable side structure, which significantly reduces the training complexity without impairing the joint model's capacity. Extensive experiments on textual graphs demonstrate our method's effectiveness by achieving the best model performance, meanwhile having the lowest training cost compared to previous methods. Moreover, we introduce two variants with caching and dynamic early exit to further enhance training and inference speed. Specifically, caching accelerates ENGINE's training by 12x, and dynamic early exit achieves up to 5x faster inference with a negligible performance drop (at maximum 1.17 across 7 datasets).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要