Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览11
暂无评分
摘要
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C-(sp(3))-C-(sp(3)) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C-(sp3) centers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要