Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography

Journal of Clinical Monitoring and Computing(2024)

引用 0|浏览2
暂无评分
摘要
We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring. Graphical Abstract
更多
查看译文
关键词
Artificial intelligence,Circulatory failure,Critical care,Hemodynamic monitoring,Left ventricular function,Transesophageal echocardiography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要