Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean

GLOBAL CHANGE BIOLOGY(2024)

引用 0|浏览2
暂无评分
摘要
Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (mu(max)) and temperature coefficients (Q(10); the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same mu(max) and the same Q(10) (as in to Eppley, 1972), (2) a unique mu(max) but the same Q(10) (similar to Kremer et al., 2017), or (3) a unique mu(max) and a unique Q(10) (following Anderson et al., 2021). These trait values were then implemented within the Massachusetts Institute of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT under a control and climate change scenario. Our results suggest that applying a mu(max) and Q(10) universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton communities, which lack diatoms globally. Additionally, we find that accounting for differences in the Q(10) between PFTs can significantly impact each PFT's competitive ability, especially at high latitudes, leading to altered modeled phytoplankton community structures in our control and climate change simulations. This then impacts estimates of biogeochemical processes, with, for example, estimates of export production varying by similar to 10% in the Southern Ocean depending on the parameterization. Our results indicate that the diversity of thermal response traits in phytoplankton not only shape community composition in the historical and future, warmer ocean, but that these traits have significant feedbacks on global biogeochemical cycles.
更多
查看译文
关键词
export processes,global change,marine biogeochemistry,marine ecology,model parameterization,phytoplankton,thermal traits
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要