Causal deep learning for explainable vision-based quality inspection under visual interference

Journal of Intelligent Manufacturing(2024)

引用 0|浏览10
暂无评分
摘要
Vision-based quality inspection is a key step to ensure the quality control of complex industrial products. However, accurate defect recognition for complex products with information-rich, structure-irregular and significantly different patterns is still a tough problem, since it causes the strong visual interference. This paper proposes a causal deep learning method (CDLM) to tackle the explainable vision-based quality inspection under visual interference. First, a structural causal model for defect recognition of complex industrial products is constructed and a causal intervention strategy to overcome the background interference is generated. Second, a defect-guided recognition neural network (DGRNN) is constructed, which can realize accurate defect recognition under the training of CDLM via feature-wise causal intervention using two sub-networks with feature difference mechanism. Finally, the causality between defect features and defective product labels can guide the DGRNN to complete the accurate and explainable learning of defect in a causal direction of optimization. Quantitative experiments show that the proposed method achieves recognition accuracy of 94.09% and 93.95% on two fabric datasets respectively, which outperforms the cutting-edge inspection models. Besides, Grad-CAM visualization experiments show that the proposed method successfully captures the data causality and realizes the explainable defect recognition.
更多
查看译文
关键词
Computer vision,Defect inspection,Deep learning,Causal inference,Explainable artificial intelligence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要