Role of Mitochondrial Reactive Oxygen Species-Mediated Chaperone-Mediated Autophagy and Lipophagy in Baicalin and N-Acetylcysteine Mitigation of Cadmium-Induced Lipid Accumulation in Liver

ANTIOXIDANTS(2024)

引用 0|浏览3
暂无评分
摘要
Cadmium (Cd) is a major health concern globally and can accumulate and cause damage in the liver for which there is no approved treatment. Baicalin and N-acetylcysteine (NAC) have been found to have protective effects against a variety of liver injuries, but it is not clear whether their combined use is effective in preventing and treating Cd-induced lipid accumulation. The study found that Cd increased the production of mitochondrial reactive oxygen species (mROS) and elevated the level of chaperone-mediated autophagy (CMA). Interestingly, mROS-mediated CMA exacerbates the Cd-induced inhibition of lipophagy. Baicalin and NAC counteracted inhibition of lipophagy by attenuating Cd-induced CMA, suggesting an interplay between CMA elevation, mitochondrial destruction, and mROS formation. Maintaining the stability of mitochondrial structure and function is essential for alleviating Cd-induced lipid accumulation in the liver. Choline is an essential component of the mitochondrial membrane and is responsible for maintaining its structure and function. Mitochondrial transcriptional factor A (TFAM) is involved in mitochondrial DNA transcriptional activation and replication. Our study revealed that the combination of baicalin and NAC can regulate choline metabolism through TFAM and thereby maintain mitochondrial structure and functionality. In summary, the combination of baicalin and NAC plays a more beneficial role in alleviating Cd-induced lipid accumulation than the drug alone, and the combination of baicalin and NAC can stabilize mitochondrial structure and function and inhibit mROS-mediated CMA through TFAM-choline, thereby promoting lipophagy to alleviate Cd-induced lipid accumulation.
更多
查看译文
关键词
baicalin,N-acetylcysteine,mitochondrial ROS,chaperone-mediated autophagy,lipophagy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要