Reinforcement-Learning-Based Risk-Sensitive Optimal Feedback Mechanisms of Biological Motor Control

2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC(2023)

引用 0|浏览3
暂无评分
摘要
Risk sensitivity is a fundamental aspect of biological motor control that accounts for both the expectation and variability of movement cost in the face of uncertainty. However, most computational models of biological motor control rely on model-based risk-sensitive optimal control, which requires an accurate internal representation in the central neural system to predict the outcomes of motor commands. In reality, the dynamics of human-environment interaction is too complex to be accurately modeled, and noise further complicates system identification. To address this issue, this paper proposes a novel risksensitive computational mechanism for biological motor control based on reinforcement learning (RL) and adaptive dynamic programming (ADP). The proposed ADP-based mechanism suggests that humans can directly learn an approximation of the risk-sensitive optimal feedback controller from noisy sensory data without the need for system identification. Numerical validation of the proposed mechanism is conducted on the arm-reaching task under divergent force field. The preliminary computational results align with the experimental observations from the past literature of computational neuroscience.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要