Spatial analyses on pre-earthquake ionospheric anomalies and magnetic storms observed by China seismo-electromagnetic satellite in August 2018

Geoscience Letters(2024)

引用 0|浏览12
暂无评分
摘要
The China Seismo-Electromagnetic Satellite (CSES), with a sun-synchronous orbit at 507 km altitude, was launched on 2 February 2018 to investigate pre-earthquake ionospheric anomalies (PEIAs) and ionospheric space weather. The CSES probes manifest longitudinal features of four-peak plasma density and three plasma depletions in the equatorial/low-latitudes as well as mid-latitude troughs. CSES plasma and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs associated with a destructive M7.0 earthquake and its followed M6.5 and M6.3/M6.9 earthquakes in Lombok, Indonesia, on 5, 17, and 19 August 2018, respectively, as well as to examine ionospheric disturbances induced by an intense storm with the Dst index of − 175 nT on 26 August 2018. Anomalous increases (decreases) in the GIM TEC and CSES plasma density (temperature) frequently appear specifically over the epicenter days 1–5 before the M7.0 earthquake and followed earthquakes, when the geomagnetic conditions of these PEIA periods are relatively quiet, Dst: − 37 to 19 nT. In contrast, TEC and CSES plasma parameter anomalies occur globally in the southern hemisphere during the storm days of 26–28 August 2018. The CSES ion velocity shows that the electric fields of PEIAs associated with the M7.0 earthquake are 0.21/0.06 mV/m eastward and 0.11/0.10 mV/m downward at post-midnight/post-noon on 1–3 August 2018, while the penetration electric fields during the storm periods of 26–28 August 2018 are 0.17/0.45 mV/m westward/downward at post-midnight of 02:00 LT and 0.26/0.26 mV/m eastward/upward at post-noon of 14:00 LT. Spatial analyses on CSES plasma discriminate PEIAs from global effects and locate the epicenter of possible forthcoming large earthquakes. CSES ion velocities are useful to derive PEIA- and storm-related electric fields in the ionosphere.
更多
查看译文
关键词
China seismo-electromagnetic satellite,Pre-earthquake ionospheric anomaly,Electric field,Total electron content,Global ionosphere map,Spatial analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要