A Three-Dimensional Non-Fullerene Acceptor with Contorted Hexabenzocoronene and Perylenediimide for Organic Solar Cells

Xin Zhu,Lei Yang,Yangyang Pan, Yuqin Yang, Xuming Ding, Chuanming Wan,Zhuo Zhang, Yun Luo,Qinghai Zhou,Liwei Wang,Shengxiong Xiao

CHEMISTRY-A EUROPEAN JOURNAL(2024)

引用 0|浏览3
暂无评分
摘要
Although fullerene derivatives such as [6,6]-phenyl-C61/C71-butyric acid methyl ester (PC61BM/PC71BM) have dominated the the photoactive acceptor materials in bulk heterojunction organic solar cells (OSCs) for decades, they have several drawbacks such as weak absorption, limited structural tunability, prone to aggregation, and high costs of production. Constructing non-fullerene small molecules with three-dimensional (3D) molecular geometry is one of the strategies to replace fullerenes in OSCs. In this study, a 3D molecule, contorted hexa-cata-hexabenzocoronene tetra perylenediimide (HBC-4-PDI), was designed and synthesized. HBC-4-PDI shows a wide and strong light absorption in the whole UV-vis region as well as suitable energy levels as an acceptor for OSCs. More importantly, the 3D construction effectively reduced the self-aggregation of c-HBC, leading to an appropriate scale phase separation of the blend film morphology in OSCs. A preliminary power conversion efficiency of 2.70 % with a champion open-circuit voltage of 1.06 V was obtained in OSCs with HBC-4-PDI as the acceptor, which was the highest among the previously reported OSCs based on c-HBC derivatives. The results indicated that HBC-4-PDI may serve as a good non-fullerene acceptor for OSCs. A conjugated molecular HBC-4-PDI with three-dimensional geometry is synthesized and applied as a non-fullerene acceptor material in the active layer of organic solar cells.+ image
更多
查看译文
关键词
contorted hexabenzocoronene,non-fullerene acceptor,organic photovoltaics,organic solar cell,perylenediimide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要