The potential of graphene coatings as neural interfaces

Vicente Lopes, Gabriel Moreira,Mattia Bramini,Andrea Capasso

NANOSCALE HORIZONS(2024)

引用 0|浏览1
暂无评分
摘要
Recent advances in nanotechnology design and fabrication have shaped the landscape for the development of ideal cell interfaces based on biomaterials. A holistic evaluation of the requirements for a cell interface is a highly complex task. Biocompatibility is a crucial requirement which is affected by the interface's properties, including elemental composition, morphology, and surface chemistry. This review explores the current state-of-the-art on graphene coatings produced by chemical vapor deposition (CVD) and applied as neural interfaces, detailing the key properties required to design an interface capable of physiologically interacting with neural cells. The interfaces are classified into substrates and scaffolds to differentiate the planar and three-dimensional environments where the cells can adhere and proliferate. The role of specific features such as mechanical properties, porosity and wettability are investigated. We further report on the specific brain-interface applications where CVD graphene paved the way to revolutionary advances in biomedicine. Future studies on the long-term effects of graphene-based materials in vivo will unlock even more potentially disruptive neuro-applications. Graphene coatings hold transformative potential for brain interfaces. This review explores the physico-chemical aspects of chemical vapor deposited graphene coatings in neurological applications, highlighting the key properties of an ideal interface.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要