A quantitative description of light-limited cyanobacterial growth using flux balance analysis

Rune Hoeper, Daria Komkova,Tomas Zavrel,Ralf Steuer

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
The metabolism of phototrophic cyanobacterial is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of the genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its analysis using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of quantitative experimental analyses, we develop a novel approach to describe light absorption and light utilization. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable to predict quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototropic microorganisms. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要