Optimization approaches to Wolbachia-based biocontrol

Jose L. Orozco-Gonzales, Antone Dos Santos, Helenice De Oliveira, Claudia P. Ferreira,Daiver Cardona-Salgado,Lilian S. Sepulveda-Salcedo,Olga Vasilieva

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
This paper proposes two realistic and biologically viable methods for Wolbachia-based biocontrol of Aedes aegypti mosquitoes, assuming imperfect maternal transmission of the Wolbachia bacterium, incomplete cytoplasmic incompatibility, and direct loss of Wolbachia infection caused by thermal stress. Both methods are based on optimization approaches and allow for the stable persistence of Wolbachia-infected mosquitoes in the wild Ae. aegypti populations in a minimum time and using the smallest quantity of Wolbachia-carrying insects to release. The first method stems from the continuous-time optimal release strategy, which is further transformed into a sequence of suboptimal impulses mimicking instantaneous releases of Wolbachia-carrying insects. The second method constitutes a novel alternative to all existing techniques aimed at the design of release strategies. It is developed using metaheuristics ($\epsilon$-constraint method combined with the genetic algorithm) and directly produces a discrete sequence of decisions, where each element represents the quantity of Wolbachia-carrying mosquitoes to be released instantaneously and only once per a specified time unit. It turns out that a direct discrete-time optimization (second method) renders better quantifiable results compared to transforming a continuous-time optimal release function into a sequence of suboptimal impulses (first method). As an illustration, we provide examples of daily, weekly, and fortnightly release strategies designed by both methods for two Wolbachia strains, wMel and wMelPop.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要