Global 500 m seamless dataset (2000-2022) of land surface reflectance generated from MODIS products

Xiangan Liang,Qiang Liu, Jie Wang, Shuang Chen, Peng Gong

EARTH SYSTEM SCIENCE DATA(2024)

引用 0|浏览0
暂无评分
摘要
The Moderate Resolution Imaging Spectroradiometer (MODIS) is widely utilized for retrieving land surface reflectance to reflect plant conditions, detect ecosystem phenology, monitor forest fires, and constrain terrestrial energy budgets. However, the state-of-the-art MODIS surface reflectance products suffer from temporal and spatial gaps due to atmospheric conditions (e.g. clouds and aerosols), limiting their use in ecological, agricultural, and environmental studies. Therefore, there is a need for reconstructing spatiotemporally seamless (i.e. gap-filled) surface reflectance data from MODIS products, which is difficult due to the intrinsic inconsistency of observations resulting from various sun/view geometry and the prolonged missing values resulting from polar night or heavy cloud coverage, especially in monsoon season. We built a framework for generating the global 500 m daily seamless data cubes (SDC500) based on MODIS surface reflectance dataset, which contains the generation of a land-cover-based a priori database, bidirectional reflectance distribution function (BRDF) correction, outlier detection, gap filling, and smoothing. The first global spatiotemporally seamless land surface reflectance at 500 m resolution was produced, covering the period from 2000 to 2022. Preliminary evaluation of the dataset at 12 sites worldwide with different land cover demonstrated its robust performance. The quantitative assessment shows that the SDC500 gap-filling results have a root-mean-square error (RMSE) of 0.0496 and a mean absolute error (MAE) of 0.0430. The SDC500 BRDF correction results showed an RMSE of 0.056 and a bias of -0.0085 when compared with MODIS nadir BRDF-adjusted reflectance (NBAR) products, indicating the acceptable accuracy of both products. From a temporal perspective, the SDC500 eliminates abnormal fluctuations while retaining the useful localized feature of rapid disturbances. From a spatial perspective, the SDC500 shows satisfactory spatial continuity. In conclusion, the SDC500 is a well-processed global daily surface reflectance product, which can serve as the fundamental input for large-scale ecological, agricultural, and environmental applications and quantitative remote sensing studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要