Evolutionary Alternating Direction Method of Multipliers for Constrained Multi-Objective Optimization with Unknown Constraints

CoRR(2024)

引用 0|浏览3
暂无评分
摘要
Constrained multi-objective optimization problems (CMOPs) pervade real-world applications in science, engineering, and design. Constraint violation has been a building block in designing evolutionary multi-objective optimization algorithms for solving constrained multi-objective optimization problems. However, in certain scenarios, constraint functions might be unknown or inadequately defined, making constraint violation unattainable and potentially misleading for conventional constrained evolutionary multi-objective optimization algorithms. To address this issue, we present the first of its kind evolutionary optimization framework, inspired by the principles of the alternating direction method of multipliers that decouples objective and constraint functions. This framework tackles CMOPs with unknown constraints by reformulating the original problem into an additive form of two subproblems, each of which is allotted a dedicated evolutionary population. Notably, these two populations operate towards complementary evolutionary directions during their optimization processes. In order to minimize discrepancy, their evolutionary directions alternate, aiding the discovery of feasible solutions. Comparative experiments conducted against five state-of-the-art constrained evolutionary multi-objective optimization algorithms, on 120 benchmark test problem instances with varying properties, as well as two real-world engineering optimization problems, demonstrate the effectiveness and superiority of our proposed framework. Its salient features include faster convergence and enhanced resilience to various Pareto front shapes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要