Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes

Vera Palma, Jose L. Gonzalez-Pimentel, Nicasio T. Jimenez-Morillo,Francesco Sauro, Sara Gutierrez-Patricio, Jose M. De la Rosa,Ilaria Tomasi,Matteo Massironi,Bogdan P. Onac,Igor Tiago, Jose A. Gonzalez-Perez, Leonila Laiz, Ana T. Caldeira, Beatriz Cubero,Ana Z. Miller

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览2
暂无评分
摘要
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an indepth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/ or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, alpha-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
更多
查看译文
关键词
Volcanic caves,Speleothems,Geomicrobiology,Biosignatures,Biomarkers,Organic matter,Subsurface microbial communities,Biomineralization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要