Effect of detachment on Magnum-PSI ELM-like pulses: II. Spectroscopic analysis and role of molecular assisted reactions

Fabio Federici,Bruce Lipschultz, Gijs R. A. Akkermans,Kevin Verhaegh, Matthew L. Reinke, Ray Chandra,Chris Bowman, Ivo G. J. Classen, the Magnum-PSI Team

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
The linear plasma machine Magnum-PSI can replicate similar conditions to those found in a tokamak at the end of the divertor leg. A dedicated capacitor bank, in parallel to the plasma source, can release a sudden burst of energy, leading to a rapid increase in plasma temperature and density, resulting in a transient heat flux increase of half of an order of magnitude, a so called ELM-like pulse. Throughout both the steady state and the pulse, the neutral pressure in the target chamber is then increased, causing the target to transition from an attached to a detached state. In the first paper related to this study direct measurements of the plasma properties are used to qualitatively determine the effect of detachment on the ELM-like pulse. This is used to show the importance of molecular assisted reactions. Molecular processes, and especially molecular activated dissociation, are found to be important in the exchange of potential energy with the plasma, while less so in radiating the energy from the ELM-like pulse. At low target chamber pressure, the plasma generated via ionisation during the part of the ELM-like pulse with the higher temperature is more than that produced by the plasma source, a unique case in linear machines. At high target chamber pressure molecular activated recombination contributes up to a third of the total recombination rate, contributing to the reduction of the target particle flux. Some metrics that estimate the energy lost by the plasma per interactions with neutrals, potentially relevant for the portion of the tokamak divertor leg below ∼10eV, are then tentatively obtained.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要