Microbiota-mediated metabolic perturbations in the gut and brain of mice after microplastic exposure

Chemosphere(2024)

引用 0|浏览3
暂无评分
摘要
Microplastics (MPs), emerging environmental toxicants, have drawn attention because of their wide distribution in the environment. Exposure to MPs induces gut microbiota dysbiosis, intestinal barrier dysfunction, metabolic perturbations, and neurotoxicity in different rodents. However, the relationship between MPs, gut microbiota, and the metabolome of the gut and brain in mice remains unclear. In this study, female C57BL/6 mice were orally gavaged with vehicle, 200 nm MP, and 800 nm MP three times per week for four weeks. Cecal contents were collected for gut microbiota analysis using 16S rRNA gene sequencing. Intestinal and brain tissues from mice were used to determine metabolic profiles using liquid chromatography-mass spectrometry (LC-MS). The results showed that MP altered microbiota composition, accompanied by metabolic perturbations in the mouse gut and brain. Specifically, Firmicutes and Bacteroidetes were suggested to be important phyla for MP exposure, partially dominating further metabolite alterations. Simultaneously, MP-induced metabolic profiles were associated with energy homeostasis and bile acid, nucleotide, and carnitine metabolic pathways. The results of the mediation analysis further revealed an MP-microbiota-metabolite relationship. Our results indicate that MPs can induce gut dysbiosis and disturb metabolic dysfunction in the mouse brain and/or intestine. Integrative omics approaches have the potential to monitor MP-induced molecular responses in various organs and systematically elucidate the complex mechanisms of human health effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要