Achieving 2.2 GPa Ultra-High Strength in Low-Alloy Steel Using a Direct Quenching and Partitioning Process

MATERIALS(2023)

引用 0|浏览2
暂无评分
摘要
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control process followed by direct quenching and partitioning (TMCP-DQP) was developed based on Fe-0.4C-1Mn-0.6Si (wt.%) low-alloy steel, and the effects of microstructure evolution on mechanical properties under TMCP-DQP process and conventional hot rolled quenched and tempered process (HR-QT) were comparatively studied. The results show that the TMCP-DQP process not only shortened the processing steps but also achieved outstanding comprehensive mechanical properties. The TMCP-DQP steel exhibited a tensile strength of 2.23 GPa, accompanied by 11.9% elongation and a Brinell hardness of 624 HBW, with an impact toughness of 28.5 J at -20 degrees C. In contrast, the HR-QT steel exhibited tensile strengths ranging from 2.16 GPa to 1.7 GPa and elongations between 5.2% and 12.2%. The microstructure of TMCP-DQP steel primarily consisted of lath martensite, containing thin-film retained austenite (RA), nanoscale rod-shaped carbides, and a minor number of nanoscale twins. The volume fraction of RA reached 7.7%, with an average carbon content of 7.1 at.% measured by three-dimensional atom probe tomography (3DAP). Compared with the HR-QT process, the TMCP-DQP process resulted in a finer microstructure, with a prior austenite grain (PAG) size of 11.91 mu m, forming packets and blocks with widths of 5.12 mu m and 1.63 mu m. The TMCP-DQP process achieved the ultra-high strength of low-alloy steel through the synergistic effects of grain refinement, dislocation strengthening, and precipitation strengthening. The dynamic partitioning stage stabilized the RA through carbon enrichment, while the relaxation stage reduced a small portion of the dislocations generated by thermal deformation, and the self-tempering stage eliminated internal stresses, all guaranteeing considerable ductility and toughness. The TMCP-DQP process may offer a means for industries to streamline their manufacturing processes and provide a technological reference for producing 2.2 GPa grade AHSS.
更多
查看译文
关键词
2.2 GPa ultra-high strength steel,TMCP-DQP process,martensite,retained austenite,mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要