Polarized Tunneling Transistor for Ultralow-Energy-Consumption Artificial Synapse toward Neuromorphic Computing

ACS NANO(2023)

引用 0|浏览14
暂无评分
摘要
Neural networks based on low-power artificial synapses can significantly reduce energy consumption, which is of great importance in today's era of artificial intelligence. Two-dimensional (2D) material-based floating-gate transistors (FGTs) have emerged as compelling candidates for simulating artificial synapses owing to their multilevel and nonvolatile data storage capabilities. However, the low erasing/programming speed of FGTs renders them unsuitable for low-energy-consumption artificial synapses, thereby limiting their potential in high-energy-efficient neuromorphic computing. Here, we introduce a FGT-inspired MoS2/Trap/PZT heterostructure-based polarized tunneling transistor (PTT) with a simple fabrication process and significantly enhanced erasing/programming speed. Distinct from the FGT, the PTT lacks a tunnel layer, leading to a marked improvement in its erasing/programming speed. The PTT's highest erasing/programming (operation) speed can reach similar to 20 ns, which outperforms the performance of most FGTs based on 2D heterostructures. Furthermore, the PTT has been utilized as an artificial synapse, and its weight-update energy consumption can be as low as 0.0002 femtojoule (fJ), which benefits from the PTT's ultrahigh operation speed. Additionally, PTT-based artificial synapses have been employed in constructing artificial neural network simulations, achieving facial-recognition accuracy (95%). This groundbreaking work makes it possible for fabricating future high-energy-efficient neuromorphic transistors utilizing 2D materials.
更多
查看译文
关键词
artificial synapses,polarized tunnelingtransistor,two-dimensional,neuromorphic computing,low-energy consumption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要