Synthesis, properties, and applications of MXenes and their composites for electrical energy storage

PROGRESS IN MATERIALS SCIENCE(2024)

引用 0|浏览8
暂无评分
摘要
MXenes, a new family of two-dimensional transition metal carbides, nitrides and carbonitrides, have emerged as promising materials for electrical energy storage (EES) systems due to their superior properties, such as high electronic conductivity, excellent mechanical capability, and hydrophily. These properties of MXenes are closely related to their structure and surface functional groups, and directly decided and readily tailored by means of synthesis methods applied. The properties of MXenes have a determining effect on the electrochemical performance of EES systems. This review begins with the intrinsic connections between properties and crystal structure, chemical composition and surface chemistry of MXenes as background. Then, the effects of latest synthesis on MXenes' properties are systematically scrutinized, including the effects of precursors, processing parameters, the etching, delaminating, and compositing strategies of MXenes. Further focus is turned to the state-of-the-art progress of MXenes and their composites acting as cathodes, anodes, current collectors, electrolyte additives, and conductive binder in supercapacitors, monovalent (Li+, Na+, K+, and halogen anion) ion batteries, and multivalent (Zn2+, Mg2+, Ca2+, and Al3+) ion batteries. The synthesis-property-application relationships in MXenes for desired EES devices are highlighted. Finally, the critical challenges and perspectives are discussed for the future development of MXenes in advanced supercapacitors and rechargeable batteries.
更多
查看译文
关键词
MXenes,MXene composites,Supercapacitors,Secondary batteries,Electrical energy storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要