Multivariate rational approximation of functions with curves of singularities

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
Functions with singularities are notoriously difficult to approximate with conventional approximation schemes. In computational applications they are often resolved with low-order piecewise polynomials, multilevel schemes or other types of grading strategies. Rational functions are an exception to this rule: for univariate functions with point singularities, such as branch points, rational approximations exist with root-exponential convergence in the rational degree. This is typically enabled by the clustering of poles near the singularity. Both the theory and computational practice of rational functions for function approximation have focused on the univariate case, with extensions to two dimensions via identification with the complex plane. Multivariate rational functions, i.e., quotients of polynomials of several variables, are relatively unexplored in comparison. Yet, apart from a steep increase in theoretical complexity, they also offer a wealth of opportunities. A first observation is that singularities of multivariate rational functions may be continuous curves of poles, rather than isolated ones. By generalizing the clustering of poles from points to curves, we explore constructions of multivariate rational approximations to functions with curves of singularities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要