ALDH5A1-deficient iPSC-derived excitatory and inhibitory neurons display cell type specific alterations

NEUROBIOLOGY OF DISEASE(2024)

引用 0|浏览18
暂无评分
摘要
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and gamma-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.
更多
查看译文
关键词
Epilepsy,Autism spectrum disorder,Stem cell derived neurons,GABA metabolism,Mitochondrion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要