A Cell-Type Selective Stimulation and Recording System for Retinal Ganglion Cells.

Philipp Lohler, Andreas Albert, Andreas Erbsloh, Nruthyathi,Frank Muller,Karsten Seidl

IEEE transactions on biomedical circuits and systems(2023)

引用 0|浏览6
暂无评分
摘要
Future retinal implants will require a stimulation selectivity between different sub-types of Retinal Ganglion Cells (RGCs) to evoke natural perceptions rather than phosphenes in patients. To achieve this, a cell-type specific stimulation pipeline is required that identifies target RGC sub-types from recorded input images and extracts the specific stimulation parameters to activate this cell-type selectively. Promising biological experiments showed that ON-/OFF- sustained/transient RGCs could be selectively activated by modulating repetition rate and amplitude of an electrical stimulation current in the kilohertz range. This research presents a 42 channel current controlled stimulation and recording system on chip (SoC) with parameter input from a real time target RGC selection algorithm. The SoC is able to stimulate retinal tissue with sinusoidal frequencies higher than 1 kHz at amplitudes of up to 200 μA at a supply voltage of 1.8 V. It also includes tunable recording units with an integrated action potential detection pipeline that are able to amplify signals between 1 Hz and 50 kHz. The required area of one stimulator is 0.0071 mm2, while one recording unit consumes an area of 0.0092 mm2. The application of sinusoidal stimulation currents in the kilohertz range towards retinal tissue leads to a suppressive response of only certain RGC sub-types that has not been oberved before, using electrical stimulation. Because this response is very similar to the natural light response of RGCs, this stimulation approach can lead to a more genuine visual perception for patients using retinal implants.
更多
查看译文
关键词
retinal prosthesis,high-frequency stimulation,closed-loop,image processing,high-density,ASIC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要