Double-layered skeleton of Li alloy anchored on 3D metal foam enabling ultralong lifespan of Li anode under high rate

CHINESE CHEMICAL LETTERS(2024)

引用 0|浏览7
暂无评分
摘要
The high specific capacity and low negative electrochemical potential of lithium metal anodes (LMAs), may allow the energy density threshold of Li metal batteries (LMBs) to be pushed higher. However, the existing detrimental issues, such as dendritic growth and volume expansion, have hindered the practical implementation of LMBs. Introducing three-dimensional frameworks (e.g., copper and nickel foam), have been regarded as one of the fundamental strategies to reduce the local current density, aiming to extend the Sand' time. Nevertheless, the local environment far from the skeleton is almost the same as the typical plane Li, due to macroporous space of metal foam. Herein, we built a double-layered 3D current collector of Li alloy anchored on the metal foam, with micropores interconnected macropores, via a viable thermal infiltration and cooling strategy. Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity, the Li alloy can effectively reduce the nucleation barrier and enhance the Li+ transportation rate, while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation. Synergistically, the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion, outputting preeminent prolonged cycling performances under high rate.(c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
更多
查看译文
关键词
Double-layered skeleton,Li alloy,3D Metal foam,Ultralong lifespan,Lithium metal batteries,High rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要