Puppy: A Publicly Verifiable Watermarking Protocol

CoRR(2023)

引用 0|浏览5
暂无评分
摘要
In this paper, we propose Puppy, the first formally defined framework for converting any symmetric watermarking into a publicly verifiable one. Puppy allows anyone to verify a watermark any number of times with the help of an untrusted third party, without requiring owner presence during detection. We formally define and prove security of Puppy using the ideal/real-world simulation paradigm and construct two practical and secure instances: (1) Puppy-TEE that uses Trusted Execution Environments (TEEs), and (2) Puppy-2PC that relies on two-party computation (2PC) based on garbled circuits. We then convert four current symmetric watermarking schemes into publicly verifiable ones and run extensive experiments using Puppy-TEE and Puppy-2PC. Evaluation results show that, while Puppy-TEE incurs some overhead, its total latency is on the order of milliseconds for three out of four watermarking schemes. Although the overhead of Puppy-2PC is higher (on the order of seconds), it is viable for settings that lack a TEE or where strong trust assumptions about a TEE need to be avoided. We further optimize the solution to increase its scalability and resilience to denial of service attacks via memoization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要