Photothermal-promoted O2/?OH generation of gold nanotetrapod @ platinum nano-islands for enhanced catalytic/photodynamic therapy

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览2
暂无评分
摘要
Ultrasmall platinum (Pt) nanozymes are used for catalytic therapy and oxygen (O2)-dependent photodynamic therapy (PDT) by harnessing the dual-enzyme activities of catalase (CAT) and peroxidase (POD). However, their applications as nanocatalysts are limited due to their low catalytic activity. Herein, we constructed a photothermal-promoted bimetallic nanoplatform (AuNTP@Pt-IR808) by depositing ultrasmall Pt nano-islands and modifying 1-(5-Carboxypentyl)-2-(2-(3-(2-(1-(5-carboxypentyl)-3,3-dimethylindolin-2-ylidene)ethylidene)2-chlorocyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-3H-indol-1-ium bromide (IR808) on gold nanotetrapod (AuNTP) with CAT/POD activities to enhance PDT/catalytic therapy. In the tumor microenvironment, the ultrasmall Pt can catalyze endogenous hydrogen peroxide (H2O2) to produce O2, relieving tumor hypoxia and enhancing the PDT performance. Moreover, AuNTP integration into the bimetallic nanoplatform showed good electron transfer properties and promoted the POD activity of ultrasmall Pt. Importantly, AuNTP@Pt-IR808 possessed higher photothermal conversion performance than single AuNTPs, which enhanced photothermal therapy (PTT). It also accelerated the CAT/POD dual-enzyme activities, and promoted the generation of singlet oxygen (1O2) and hydroxyl radical (center dot OH). By enhancing the performances of PTT/PDT/catalytic therapy, the developed AuNTP@Pt-IR808 nanoplatform demonstrated good antitumor efficacy against breast cancer.
更多
查看译文
关键词
Gold nanotetrapod@platinum nano-islands,Dual-enzyme activities,Photothermal promotion,Catalytic therapy,Photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要