A novel and simple spectral method for nonlocal PDEs with the fractional Laplacian

Shu Zhou,Yanzhi Zhang

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要