To Stop or to Shuttle Halides? The Role of an Ionic Liquid in Thermal Halide Mixing of Hybrid Perovskites

ACS ENERGY LETTERS(2023)

引用 0|浏览1
暂无评分
摘要
Ionic liquids, such as BMIMBF4, are added to mixed halide perovskites to prevent halide phase segregation and increase phase stability, but exact mechanisms changing halide kinetics are currently unclear. Here, X-ray diffraction, nuclear magnetic resonance, and photoluminescence spectroscopy are used in situ under dark conditions to follow thermally driven halide mixing processes forming MAPbI(3-x)Br(x) from physical mixtures of MAPbI(3) and MAPbBr(3) powders with and without BMIMBF4. Halide migration is significantly accelerated with BMIMBF4 compared to additive-free mixtures. This is attributed to liquid-like dynamics of BMIMBF4 at elevated temperatures, liberating defect sites at perovskite interfaces. Furthermore, the presence of BMIMBF4 increases the activation energies for bromide migration, suggesting a changed nature of the latter. This is explained by a preferred interaction between BMIM+ and bromide, indicating that the cations of the additive shuttle bromide ions between interfaces. Overall, these observations pave the way for a better understanding of halide transport in hybrid perovskites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要