Advancing solar magnetic field extrapolations through multi-height magnetic field measurements

Robert Jarolim, Benoit Tremblay, Matthias Rempel, Momchil Molnar,Astrid M. Veronig,Julia K. Thalmann,Tatiana Podladchikova

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
Non-linear force-free extrapolations are a common approach to estimate the 3D topology of coronal magnetic fields based on photospheric vector magnetograms. The force-free assumption is a valid approximation at coronal heights, but for the dense plasma conditions in the lower atmosphere, this assumption is not satisfied. In this study, we utilize multi-height magnetic field measurements in combination with physics-informed neural networks to advance solar magnetic field extrapolations. We include a flexible height-mapping, which allows us to account for the different formation heights of the observed magnetic field measurements. The comparison to analytical and simulated magnetic fields demonstrates that including chromospheric magnetic field measurements leads to a significant improvement of our magnetic field extrapolations. We also apply our method to chromospheric line-of-sight magnetograms, from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) observatory, in combination with photospheric vector magnetograms, from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO). The comparison to observations in extreme ultraviolet wavelengths shows that the additional chromospheric information leads to a better agreement with the observed coronal structures. In addition, our method intrinsically provides an estimate of the corrugation of the observed magnetograms. With this new approach, we make efficient use of multi-height magnetic field measurements and advance the realism of coronal magnetic field simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要