Nanoscale Transport during Liquid Film Thinning Inhibits Bubble Coalescing Behavior in Electrolyte Solutions

Bo Liu,Rogerio Manica, Qingxia Liu,Zhenghe Xu, Evert Klaseboer,Qiang Yang

PHYSICAL REVIEW LETTERS(2023)

引用 1|浏览0
暂无评分
摘要
The long-standing puzzle of why two colliding bubbles in an electrolyte solution do not coalesce immediately upon contact is resolved. The water film between the bubbles needs to be drained out first before its rupture, i.e., coalescence. Experiments reveal clearly that the film thinning exhibits a rather sudden slowdown (around 30-50 nm), which is orders of magnitude smaller than similar experiments involving surfactants. A critical step in explaining this phenomenon is to realize that the solute concentration is different in bulk and at the surface. During thinning, this will generate an electrolyte concentration difference in film solution along the interacting region, which in turn causes a Marangoni stress to resist film thinning. We develop a film drainage model that explains the experimentally observed phenomena well. The underlying physical mechanism, that confused the scientific community for decades, is now finally revealed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要