Trajectory Tracking Analysis of Fractional-Order Nonlinear PID Controller for Single Link Robotic Manipulator System

Lecture notes in networks and systems(2023)

引用 0|浏览0
暂无评分
摘要
Increasing demand for automation is being observed especially during the recent scenarios like the Covid-19 pandemic, wherein direct contact of the healthcare workers with the patients can be life-threatening. The use of robotic manipulators facilitates in minimizing such risky interactions and thereby providing a safe environment. In this research work, a single link robotic manipulator (SLRM) system is taken, which is a nonlinear multi–input–multi–output system. In order to address the limitations like heavy object movements, uncontrolled oscillations in positional movement, and improper link variations, an adaptive fractional-order nonlinear proportional, integral, and derivative (FONPID) controller has been suggested. This aids in the effective trajectory tracking of the performance of the SLRM system under step input response. Further, by tuning the controller gains using genetic algorithm optimization (GA) based on the minimum objective function ( $$J_{{\text{IAE}}}$$ ) of the integral of absolute error (IAE) index, the suggested controller has been made more robust for trajectory tracking performance. Finally, the comparative analysis of the simulation results of proportional & integral (PI), proportional, integral, & derivative (PID), fractional-order proportional, integral, & derivative (FOPID), and the suggested FONPID controllers validated that the FONPID controller has performed better in terms of minimum $$J_{{\text{IAE}}}$$ and lower oscillation amplitude in trajectory tracking of positional movement of SLRM system.
更多
查看译文
关键词
trajectory tracking,controller,fractional-order
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要