Aerogel-derived nickel-iron oxide catalysts for oxygen evolution reaction in alkaline media

Luigi Osmieri,Haoran Yu, Raphaël P. Hermann, Melissa E. Kreider, Harry M. Meyer, A. Jeremy Kropf, Jae Hyung Park, Shaun M. Alia,David A. Cullen,Deborah J. Myers,Piotr Zelenay

Applied Catalysis B: Environment and Energy(2024)

引用 0|浏览4
暂无评分
摘要
Anion exchange membrane water electrolyzers (AEMWEs) can generate hydrogen with a pure water feed using noble metal-free catalysts. The development of highly active and stable catalysts for oxygen evolution reaction (OER) is required for improving performance of AEMWEs systems. Ni-Fe (oxy)hydroxides show high OER catalytic activity in alkaline media, but typically have low surface area. In this work, we investigate a series of Ni-Fe oxides with high surface area and disordered morphology, obtained using an aerogel synthesis method. We evaluate the impact of different synthesis variables on the OER activity and demonstrate that heat treatment at high temperatures generates more ordered structure, resulting in a decrease in OER activity. Advanced characterization reveals that maintaining highly disordered and porous structure of the aerogel is essential to achieving high OER activity, as it enables the formation of highly OER-active lamellar structures of the catalyst.
更多
查看译文
关键词
Water electrolysis,Anion exchange membrane,Oxygen evolution reaction,Aerogel,Nickel-iron (oxy)hydroxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要