Asters

Proceedings of the 59th ACM/IEEE Design Automation Conference(2022)

引用 0|浏览0
暂无评分
摘要
Complex event-driven neuron dynamics was an obstacle to implementing efficient brain-inspired computing architectures with VLSI circuits. To solve this problem and harness the event-driven advantage, we propose ASTERS, a resistive random-access memory (ReRAM) based neuromorphic design to conduct the time-to-first-spike SNN inference. In addition to the fundamental novel axon and neuron circuits, we also propose two techniques through hardware-software co-design: "Multi-Level Firing Threshold Adjustment" to mitigate the impact of ReRAM device process variations, and "Timing Threshold Adjustment" to further speed up the computation. Experimental results show that our cross-layer solution ASTERS achieves more than 34.7% energy savings compared to the existing spiking neuromorphic designs, meanwhile maintaining 90.1% accuracy under the process variations with a 20% standard deviation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要