Edgeless-GNN: Unsupervised Representation Learning for Edgeless Nodes

Yong-Min Shin, Cong Tran,Won-Yong Shin,Xin Cao

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING(2024)

引用 0|浏览0
暂无评分
摘要
We study the problem of embedding edgeless nodes such as users who newly enter the underlying network, while using graph neural networks (GNNs) widely studied for effective representation learning of graphs. Our study is motivated by the fact that GNNs cannot be straightforwardly adopted for our problem since message passing to such edgeless nodes having no connections is impossible. To tackle this challenge, we propose $\mathsf{Edgeless-GNN}$Edgeless-GNN, a novel inductive framework that enables GNNs to generate node embeddings even for edgeless nodes through unsupervised learning. Specifically, we start by constructing a proxy graph based on the similarity of node attributes as the GNN's computation graph defined by the underlying network. The known network structure is used to train model parameters, whereas a topology-aware loss function is established such that our model judiciously learns the network structure by encoding positive, negative, and second-order relations between nodes. For the edgeless nodes, we inductively infer embeddings by expanding the computation graph. By evaluating the performance of various downstream machine learning tasks, we empirically demonstrate that $\mathsf{Edgeless-GNN}$Edgeless-GNN exhibits (a) superiority over state-of-the-art inductive network embedding methods for edgeless nodes, (b) effectiveness of our topology-aware loss function, (c) robustness to incomplete node attributes, and (d) a linear scaling with the graph size.
更多
查看译文
关键词
Computation graph,edgeless node,graph neural network (GNN),inductive network embedding,unsupervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要