Multi-robot, multi-sensor exploration of multifarious environments with full mission aerial autonomy

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH(2024)

引用 0|浏览1
暂无评分
摘要
We present a coordinated autonomy pipeline for multi-sensor exploration of confined environments. We simultaneously address four broad challenges that are typically overlooked in prior work: (a) make effective use of both range and vision sensing modalities, (b) perform this exploration across a wide range of environments, (c) be resilient to adverse events, and (d) execute this onboard teams of physical robots. Our solution centers around a behavior tree architecture, which adaptively switches between various behaviors involving coordinated exploration and responding to adverse events. Our exploration strategy exploits the benefits of both visual and range sensors with a generalized frontier-based exploration algorithm and an OpenVDB-based map processing pipeline. Our local planner utilizes a dynamically feasible trajectory library and a GPU-based Euclidean distance transform map to allow fast and safe navigation through both tight doorways and expansive spaces. The autonomy pipeline is evaluated with an extensive set of field experiments, with teams of up to three robots that fly up to 3 m/s and distances exceeding 1 km in confined spaces. We provide a summary of various field experiments and detail resilient behaviors that arose: maneuvering narrow doorways, adapting to unexpected environment changes, and emergency landing. Experiments are also detailed from the DARPA Subterranean Challenge, where our proposed autonomy pipeline contributed to us winning the "Most Sectors Explored" award. We provide an extended discussion of lessons learned, release software as open source, and present a video that illustrates our extensive field trials.
更多
查看译文
关键词
Multi-robot systems,aerial autonomy,exploration,sensor coverage,path planning,behavior trees,subterranean mapping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要