Ternary electrochemiluminescence quenching effects of CuFe2O4@PDA-MB towards self-enhanced Ru(dcbpy)32+functionalized 2D metal-organic layer and application in carcinoembryonic antigen immunosensing

ANALYTICA CHIMICA ACTA(2024)

引用 0|浏览7
暂无评分
摘要
Background: Carcinoembryonic antigen (CEA) is a significant glycosylated protein, and the unusual expression of CEA in human serum is used as a tumor marker in the clinical diagnosis of many cancers. Although scientists have reported many ways to detect CEA in recent years, such as electrochemistry, photoelectrochemistry, and fluorescence, their operation is complex and sensitivity is average. Therefore, finding a convenient method to accurately detect CEA is significance for the prevention of malignant tumors. With high sensitivity, quick reaction, and low background, electrochemiluminescence (ECL) has emerged as an essential method for the detection of tumor markers in blood. Results: In this work, a "signal on-off" ECL immunosensor for sensitive analysis of CEA ground on the ternary extinction effects of CuFe2O4@PDA-MB towards a self-enhanced Ru(dcbpy)32+ functionalized metal-organic layer [(Hf)MOL-Ru-PEI-Pd] was prepared. The high ECL efficiency of (Hf)MOL-Ru-PEI-Pd originated from the dual intramolecular self-catalysis, including intramolecular co-reaction between polyethylenimine (PEI) and Ru (dcbpy)32+. At the same time, loading Pd NPs onto (Hf)MOL-Ru-PEI could not only improve the electron transfer ability of (Hf)MOL-Ru-PEI, but also provide more active sites for the reaction of Ru(dcbpy)32+ and PEI. In the presence of CEA, CuFe2O4@PDA-MB-Ab2 efficiently quenches the excited states of (Hf)MOL-Ru-PEI-Pd by PDA, Cu2+, and methylene blue (MB) via energy and electron transfer, leading to an ECL signal decrease. Under optimal conditions, the proposed CEA sensing strategy showed satisfactory properties ranging from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 20 fg mL-1. Significance: The (Hf)MOL-Ru-PEI-Pd and CuFe2O4@PDA-MB were prepared in this work might open up innovative directions to synthesize luminescence-functionalized MOLs and effective quencher. Besides, the ECL quenching mechanism of Ru(dcbpy)32+ by MB was successfully explained by the inner filter effect (ECL-IFE). At last, the proposed immunosensor exhibits excellent repeatability, stability, and selectivity, and may provide an attractive way for CEA and other disease markers determination.
更多
查看译文
关键词
Electrochemiluminescence sensor,Carcinoembryonic antigen,Quenching probe,Self-enhanced,Ru(dcbpy)32+
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要