Genomic instability analysis in DNA from Papanicolaou test provides proof-of-principle early diagnosis of high-grade serous ovarian cancer

SCIENCE TRANSLATIONAL MEDICINE(2023)

引用 0|浏览5
暂无评分
摘要
Late diagnosis and the lack of screening methods for early detection define high-grade serous ovarian cancer (HGSOC) as the gynecological malignancy with the highest mortality rate. In the work presented here, we investigated a retrospective and multicentric cohort of 250 archival Papanicolaou (Pap) test smears collected during routine gynecological screening. Samples were taken at different time points (from 1 month to 13.5 years before diagnosis) from 113 presymptomatic women who were subsequently diagnosed with HGSOC (pre-HGSOC) and from 77 healthy women. Genome instability was detected through low-pass whole-genome sequencing of DNA derived from Pap test samples in terms of copy number profile abnormality (CPA). CPA values of DNA extracted from Pap test samples from pre-HGSOC women were substantially higher than those in samples from healthy women. Consistently with the longitudinal analysis of clonal pathogenic TP53 mutations, this assay could detect HGSOC presence up to 9 years before diagnosis. This finding confirms the continual shedding of tumor cells from fimbriae toward the endocervical canal, suggesting a new path for the early diagnosis of HGSOC. We integrated the CPA score into the EVA (early ovarian cancer) test, the sensitivity of which was 75% (95% CI, 64.97 to 85.79), the specificity 96% (95% CI, 88.35 to 100.00), and the accuracy 81%. This proof-of-principle study indicates that the early diagnosis of HGSOC is feasible through the analysis of genomic alterations in DNA from endocervical smears.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要