Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control

APPLIED ENERGY(2024)

引用 1|浏览4
暂无评分
摘要
Advanced energy management strategy (EMS) can ensure healthy, stable, and efficient operation of the on-board energy systems. Model Predictive Control (MPC) and Deep Reinforcement Learning (DRL) are two powerful control methods that have been extensively researched in the field of vehicle energy management. However, there are some problems with both approaches. On the one hand, MPC is difficult to cope with the complex systems and the excessive computational load caused by the non-linear solving over long prediction horizon, on the other hand, DRL lacks adaptability to different driving conditions and is poorly interpretable. Therefore, this paper innovatively proposes a learning-based model predictive (L-MPC) EMS for fuel cell hybrid electric bus (FCHEB) with health-aware control. This method effectively merges the advantages of control theory and machine learning. Specifically, firstly, the precise aging models for vehicular energy systems are established and incorporated into the optimization framework along with hydrogen consumption related metrics. Secondly, the principles of the learning-based MPC algorithm are thoroughly elucidated. In addition, to ensure driving details under future conditions, a speed predictor based on a double-layer Bi-directional Long Short-Term Memory (BiLSTM) is proposed at the strategy supervision layer. Finally, the superiority of the proposed strategy in prolonging the lifespan of the energy systems and reducing overall vehicle operating cost is verified by comprehensive comparisons with state-of-the-art MPC and DRL methods under real-world collected driving condition.
更多
查看译文
关键词
Energy management,Learning-based MPC,Fuel cell hybrid electric bus,Health awareness control,Reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要