Electronics Design and Verification for Robots With Actuation and Sensing Requirements

Dongsheng Chen,Zonghao Huang,Cynthia Sung

Volume 3B: 49th Design Automation Conference (DAC)(2023)

引用 0|浏览1
暂无评分
摘要
Abstract Robot design is a challenging problem involving a balance between the robot’s mechanical design, kinematic structure, and actuation and sensing capabilities. Recent work in computational robot design has focused on mechanical design while assuming that the given actuators are sufficient for the task. At the same time, existing electronics design tools ignore the physical requirements of the actuators and sensors in the circuit. In this paper, we present the first system that closes the loop between the two, incorporating a robot’s mechanical requirements into its circuit design process. We show that the problem can be solved using an iterative search consisting of two parts. First, a dynamic simulator converts the mechanical design and the given task into concrete actuation and sensing requirements. Second, a circuit generator executes a branch-and-bound search to convert the design requirements into a feasible electronic design. The system iterates through both of these steps, a process that is sometimes required since the electronics components add mass that may affect the robot’s design requirements. We demonstrate this approach on two examples — a manipulator and a quadruped — showing in both cases that the system is able to generate a valid electronics design.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要