Compensated Ferrimagnets with Colossal Spin Splitting in Organic Compounds.

Physical review letters(2024)

引用 0|浏览1
暂无评分
摘要
The study of the magnetic order has recently been invigorated by the discovery of exotic collinear antiferromagnets with time-reversal symmetry breaking. Examples include altermagnets and compensated ferrimagnets, which show spin splittings of the electronic band structures even at zero net magnetization, leading to several unique transport phenomena, notably spin-current generation. Altermagnets demonstrate anisotropic spin splitting, such as d-wave, in momentum space, whereas compensated ferrimagnets exhibit isotropic spin splitting. However, methods to realize compensated ferrimagnets are limited. Here, we demonstrate a method to realize a fully compensated ferrimagnet with isotropic spin splitting utilizing the dimer structures inherent in organic compounds. Moreover, based on ab initio calculations, we find that this compensated ferrimagnet can be realized in the recently discovered organic compound (EDO-TTF-I)_{2}ClO_{4}. Our findings provide an unprecedented strategy for using the dimer degrees of freedom in organic compounds to realize fully compensated ferrimagnets with colossal spin splitting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要