Nanoemulsion-integrated gelatin/bacterial cellulose nanofibril-based multifunctional film: Fabrication, characterization, and application.

International journal of biological macromolecules(2023)

引用 0|浏览0
暂无评分
摘要
The current requirements of food safety regulations and the environmental impact stemming from plastic packaging can only be addressed by developing suitable bio-nanocomposite films. Therefore, this study is dedicated to the fabrication of multifunctional film composed of gelatin, bacterial cellulose nanofibrils (BCNF), and black pepper essential oil nanoemulsion (BPEONE) and application for duck meat preservation. BCNF was prepared through ultrasonication of cellulose derived from Komagataeibacter xylinus. BPEONE observed spherical morphology with a diameter ranging from 83.7 to 118 nm. A film matrix containing a higher gelatin proportion than BCNF was more effective in trapping BPEONE. However, increasing the BPEONE fraction showed more surface abrasion and voids in the film morphology. A flexible film with good interaction, crystallinity, and greater thermal stability (421 °C) was developed. Nevertheless, film hydrophobicity (118.89°) declined, resulting in a notable effect on water solubility, swelling, and water vapor permeability. Moreover, the film had improved antibacterial and antioxidant activities, coupled with controlled release characteristics. Consequently, the developed film effectively retarded the lipid oxidation, inhibited microbial growth, and extended the shelf life of duck meat at refrigeration (4 °C) by 3 days, and made the film a promising alternative in the realm of bio-active packaging technology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要