Label-Free Single-Cell SERS Detection and Fluorescence Imaging of Molecular Responses to Endoplasmic Reticulum Stress under Electrical Stimulation

Analytical chemistry(2023)

引用 0|浏览4
暂无评分
摘要
The endoplasmic reticulum (ER) is one of the most important organelles in eukaryotic cells, in which most proteins and lipids are synthesized to regulate complex cellular processes. Generally, the excessive accumulation of unfolded or misfolded proteins can disturb ER homeostasis and induce endoplasmic reticulum stress (ERS). Howbeit, the molecular stress responses within ERS and metastatic behaviors of tumor cells during electrical stimulation (ES) are still poorly investigated and remain a challenge. In this study, by the combined use of fluorescence imaging, ER-targeting plasmonic nanoprobes were developed to trace molecular stress response profiling within the ER during a constant-voltage ES process at similar to 1 V based on label-free surface-enhanced Raman spectroscopy (SERS). The excess accumulation of beta-misfolded proteins was found after the ES, leading to breaking of the ER homeostasis and further inducing mitochondrial dysfunction. Notably, the excessive stress of ER under ES can destroy the calcium ion balance and induce significant upregulation of calreticulin expression. Importantly, the content ratio of two kinds of cadherin between E-cadherin and N-cadherin was gradually improved with the voltages boosted. Meanwhile, the epithelial adhesion factor expression was ascended with voltages amplified, leading to inhibiting tumor cell migration at low voltages or death under higher voltages (similar to 1 V). This study provides cellular insights into the ES approach for tumor therapy and also provides a simple and effective method for detecting molecular stress responses in endoplasmic reticulum stress.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要