Examining the mechanics of rope bending over a three-dimensional edge in ascending robots

Scientific Reports(2023)

引用 0|浏览0
暂无评分
摘要
This paper presents the analysis of ropes’ bending on three-dimension edges by ascending robots. A rope ascending robot (RAR) is a type of exterior wall-working robot that utilizes a synthetic rope to traverse the outer surface of a building. Rope-based façade cleaning robots demonstrate effective performance in well-structured buildings. However, in unstructured buildings, the rope used by these robots may become entangled or caught on various structures, presenting a significant challenge for their operation. If the rope becomes caught on a structure, the robot will be unable to move to its intended position. In more severe cases, the rope may become damaged, leading to potential failure or even a fall of the robot. Therefore, solving this problem is crucial for safe and efficient robot operation. Consequently, this study defines the issue of the rope becoming caught on a structure as a rope-locking problem and analyzes it by categorizing it based on the dimensions of contact between the rope and the edge. To address the varying tension experienced in different areas, the rope was divided into micro units and subjected to a three-dimensional analysis to resolve the rope-locking problem. Additionally, the analysis was verified by experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要